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TECHNICAL NOTE 2718

TWO-DIMENSIONAL STEADY NONVISCOUS AND VISCOUS
COMPRESSIBLE FLOW THROUGH A SYSTEM QF
EQUIDISTANT BIADES

By Hans J. Reissner, Leonard Meyerhoff,
and Martin Bloom

SUMMARY

This paper treats the two-dimensional flow of a compressible, non-
viscous fluid through blade systems of equidistant -spacing, of identical
shape, and of straight-line arrangement of position, for which the names
of grid, cascade, deflector, and lattice systems are in use.

The requirement of two-dimensional flow, if confined to a finite
region, must be assumed to be realized by enclosing the flow between
four frictionless walls, two of which are perpendicular to the span
axis of the blades and two of which follow the inflow and outflow and
coincide with the surface lines of the innermost and outermost blades
of the system.

The treatment of this problem is carried out in two steps. First,
it 1s assumed that the system of finitely spaced blades is replaced by
a system of infinitesimally spaced blades, where the action of the blades
is expressed by means of a continuous force field which is uniform in
the direction of spacing. Then, in the second step, -the transition to
finite spacing is made by replacing the force field between the blades
by the inertia and pressure terms which were omitted in the case of

. Infinitesimal spacing.

A numerical example is worked out and represented graphically for
a system of blades with a shape symmetric about their midpoint and
which produce a 90° deflection of a uniform flow. The differential
equation determining the change of the blade shape by finite spacing
permits an infinite number of solutions. The solution in this paper
leads to & line airfoil distorted very little from the shape for infin-
itesimal spacing.

Viscous flow through a grid system of equidistant, narrowly spaced
blades is treated in an appendix by the introduction of a velocity,
velocity gradient, pressure, and force field of uniformity across the
blades. The method of treatment is a generalization of the method
applied in the main text for nonviscous flow and in NACA TN 2493 for
isentropic flow. '
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INTRODUCTION

Closely spaced airfoil blade systems in an incompressible or com-
pressible fluid can, in a first approach, be represented by a continuous
field of force intensity of either one-dimensional or circular two-
dimensional symmetry. The arrangement of the blades is then either
straight or circular; the blades may be either at rest or in steady
motion.

Steady, nonviscous flow of an incompressible or compressible fluid
through such a field can be analyzed by Euler's dynamic equations, the
equation of state, the equation of change of state, the continuity equa-
tion, and the condition that the force field is of conservative char-
acter (i.e., without dissipation of energy).

The complete solution of this system of equations and the deter-
mination of those sets of streamlines which form the blade surfaces can
be derived by integration. TFor a three-dimensional flow of given bound-
ary conditions, it is best to prescribe the pressure function along the
flow and one of the functions of a velocity component; while for a two-
dimensional flow the prescription of the pressure function alone 1s
sufficient for the. simplest complete integration. In this paper, only
the latter (two-dimensional) case is treated.

The transition from these solutions to finite spacing can be
achieved by replacing the force field of infinitesimal spacing in the
flow equations by those terms of Euler's dynamic equations which were
missing in the first approach of infinitesimal spacing, where uniform
symmetry of flow is assumed.

The analysis developed in this paper can be extended in two impor-
tant directions. First, the method applied here for nonviscous flow
can be adapted to viscous flow; second, it is possible to use the pro-
cedure in this report to predict the flow values through prescribed,
two-dimensional blade systems. Viscous flow through a grid system of
equidistant, narrowly spaced blades is treated in the appendix at the
end of this paper.

This investigation was conducted at the Polytechnic Institute of
Brooklyn under the sponsorship and with the financial assistance of the
National Advisory Committee for Aeronautics. The work on the nonviscous
flow was done Jjointly by H. J. Reissner and L. Meyerhoff and on the
viscous flow by H. J. Reissner and M. Bloom.
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" SYMBOLS
X,y Cartesian coordinates, where the y-axis connects the leading
edges of blades
u,v velocity components in x- and y-directions, respectively
f impressed force intensity, per unit of volume
P pressure
p mass density
t time
T temperature
P enthalpy (pressure-density) relation < gé)
' P
k impressed force intensity per unit of mass (f/p)
R gas constant in technical units \
Vg resultant velocity <<u2 + ve) 1/ 2)
7 ratio of specific heats
u\ nondimensional distance number G?_%j&%
A length of blade system in direction of x-axis
X1 shift of a point of a streamline in direction of x-axis, caused
by transition to finite spacing '
X

E, = =
1=7

- X0
Subscripts:
in intake immediately at leading edge of blade system

ex

exit
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L
o] flow functions in & blade system of infinitesimal spacing
Sp finite spacing’'of blades

GENERAL ANALYSIS

Infinitesimal Spacing

Figure 1 shows a representation of a two-dimensional flow for an
infinitesimally spaced curved blade system. The connecting straight
line of the leading blade edges is chosen as the y-axis, and perpendic-
ular to it, the x-axis. For infinitesimal spacing the pressure and
inertia force discontinuities of the flow at each blade are replaced
by a continuous field of force intensity (k = £/p) in a steady flow,
which is two-dimensional in the dependent velocity components u
and v and one-dimensional in x, for which

o
E=O
%:o
Ps)
=10

Force-field vector.- The field k = f/p of force intensity per
unit of mass in Cartesian coordinates is given by

kx =

oki o

ky =

where f is the force intensity per unit of volume.

Enthalpy function.- It is further assumed that the flow is non-
viscous and isentropic (no heat input or loss) so that the density p
is a known function of the pressure p. Because of this assumption, it

becomes convenient to introduce the enthelpy P =U/\%$.
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This has the advantage of reducing in a simple manner the number of
dependent variables. ‘

The enthalpy function P, under the condition of isentropy, has
in technical units the value ,

‘d_ 7 E
P=/—2= 1
4 it (1)
which follows from the condition of change of state

2 _ (oY

= (o) (2)

\

From the assumption of a perfect gas, the equation of state is

b = RTpg (3)
The values of p and p can be expressed in terms of P, namely,
by
. P P \Z :
= (z—7-1T , (%)
Pin i '
and
1

o _ [pY1 |
o @in> | (5)

where the subscript 1n denotes, here and in the analysis to follow,
values at the intake of the system. The flow values at the intake to the
blade system, for this analysis of infinitesimal spacing, are assumed to
be the same values as those in the free stream.

It follows also, from equations (2) and (3), that

y Pin
P = =
in 7 5y 1 03 / (6)
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Flow equations.~ The dynamic equations of a two-dimensional flow
between two blades are -

pu g% + pv g% + gﬁ =0

pu g% + pv %% + %5 =0

For infinitesimal spacing with independence of y for velocity and
pressure and with the force field, the equations become

u Sy (8)
u %% =k, (9)

Condition of nonviscous flow.- The condition of nonviscous flow
requires that the force vector be perpendicular to the streamlines, so
that

ku + kv =0 . (10)

In terms of the streamline tangents (see fig. 1) it cam be written in
the form

= .Y (11)

Continuity equation.- The system of equations is completed by the
continuity equation of steady flow; namely,

5 (o0 + & (ov) = 0 (12)

The condition 9 - 0, given above, simplifies equation (12) and leads
to the following first integral: '

pu = C = Pin%in (13)

Energy integral.- Flow equations (8) and (9) together with equa-
tion (10) furnish Bernmoulli's integral; namely,
2 U2 4 vy © ,
e + v2 + in in (1k)

B) P =._‘_—"'2 + Pin
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The velocities u and v can now, if equations (1), (2), (12), and (1k)
are observed, be expressed by the enthalpy P.

This can be done as follows. At first, the continuity equation (13)
and the change-of-state relation (equatioq (2)) give

1

T (%)l_; (15)

Second, the y velocity component v follows from the energy integral
(1) combined with equation (15) in the form

147

v 2_1+<uin>2+2Pin _ Pl Bn (uin>2<P >l—7

n

It is necessary for the purpose of the analysis to give the expressions
for the force field k. These expressions are readily given terms of the
function. P. This 1s done by the insertion of the values of the veloc-
1ty components u and .v, given by equations (15) and (16), into the
flow equations (8) and (9).

Using the abbreviation & = ', one obtains:
ax
2 1
uin® /p \I77
kx =1 2 (P_ . + P
‘ in
or
Ly
. 1-y
1 uln%) P
=11+ p! (17)
x Sl <;in <%iq>
and
" .
ky = -kx '\—f- ' (18)

From the results obtained in the preceding paragraphs, it can be
seen that all the variables appearing in the complete setup of equations
are expressible in terms of the enthalpy function P and the intake
(entrance) values wuy,, vy, Pins Pin» @and Py .

o e e L = A ———— T i e, £ =T T e e i e, £ A et 4o s At 1. s P oot et £t e e e -
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Compilation of expressions for infinitesimal spacing.- The fol-
lowing relations are used for calculating the variables for infinitesimal
spacing, with 7 = l.k:

p__1 5.
p 3.5P (29)
o _ (22
Pin Pin)j \ (20)
o _ Q_)P_ 2 (21)
Pin in .
a . [P \25
= (o) (22)
oV o (f B p B eV
' ) -6
. Uin P
=|1 - 2.5 =— [=— P! (2k4)
x Pin (Pin
u
ky = -ky (18).
< dy _ v
il - (11)

The form of the relations above shows that the simplest calculation of
all variasbles can be done with P as a basic chosen function. It
follows therefore that, in the case of a continuous flow and force field
(both constant in the direction of y), the velocity field, the stream-
lines, and the pressure and density distributions are determined by a
free choice of the enthalpy function and of the intake values of the
flow. This freedom of choice, however, will be somewhat restricted
after the continuous symmetry of infinitesimal spacing is replaced by

a discontinuous symmetry of finite blade spacing.

If, however, it is desired to calculate the variables for a flow
through blade systems of prescribed shape, it is necessary to express
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the variables in terms of the streamline tangents. This "inverse pro-
cedure,"”" though somewhat involved, should lead to valuable results, but
will not be investigated in this report

Equation of streamlines (for infinitesimal spacing).- The equation
of the streamlines for an infinitesimally spaced blade system is derived
from the streamline tangent equation (11), which is

- a | e

From equation (11), the integration for y leads to

X
; =f Y gx + Constant (25)
0 u

where the values of u and v in equation (25) are given by equa-

tions (15) and (16). In general, it is to expected that the integral

of equation (25) will have to be evaluated graphically. A special

example is given in the section, "An Application of the General Analysis."

Transition to Finite Blade Spacing

Set of series transforming velocities and enthalpy.~ In the case of
finite blade spacing, shown in figure 2, the condition 5 =0 is no

longer valid and the force field k,,- ky must dissppear; furthermore

the dynamic equations and the continuity equation must be complemented
by the addition of the y derivatives in order to account for the iner-
tla forces and the pressure gradients in the direction of y. In the
analysis to follow the subscript o denotes the original values of
infinitesimal spacing of all variables of the preceding sections. This
transition to finite spacing must evidently change gradually the velocity
components u and Vv and the enthalpy P to values different from the
original values u, and v, of infinitesimal spacing.

The development is -based on the assumption that a set of equi-
distant streamlines, as given by the continuous force field k of
infinitesimal spacing is kept unchanged (fixed or frozen) in shape,
velocity distribution, and pressure distribution (see fig. 2). The
changed velocities gnd pressures on the other (free) streamlines will
then be determined by a set of transforming series in powers of dimen-
sionless distance numbers

y-yo

: (26)

N =
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v

where 1 is the length of the blade system in the x-direction, yb(x)
the original stresmlines of infinitesimal spacing, and y(x) a point
on a streamline of finite spacing. Also

_ Jsp
sp = 7 (27)

is the spacing number for the leading and trailing edges. This method
of correcting series is Jjustified by the compatibility of all resulting
functions.

The series set is proposed in the form

u = ug "'Zun“n’ w, = u,(x)
n=1

Vo=V, o+ zz;yhnn, vy = V(%) > (28) -
n=

P =P, +Zann, P, = P, (x)
n=

-

These series must satisfy the flow equations after they have been com-
plemented by the addition of the y derivatives and stripped of the
force field k. The force field, however, appears indirectly after

the original inertia terms (like up , and so forth) are expressed

ox <
by means of equations (8) and (9), with the use of the values in
equations (24) and (18) of the original force field k. The conver-
gence of the series of equations (28) will be determined by means of
the final numerical results.

The complete dynamic equations with the abbreviations §L ="'
\ >'q
)

and — = * are given by
dy
uu' + vu® + P' =0
(29)

uv' + vv' + P'= 0

The complete continuity equation, if p 1is replaced by equation (5),
that is, by

1
o _ (EBYV '
- Pm) (5)
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1is
(y = 1)P(u* + v") + uP' + vP* = 0 (30)
For abbreviation,lone may write: “ )

U s D (K = ug + T
n=1

V=v, + g vﬁ(x)qn =vVy + V ° (31)
n=1
n
n:; )

-~/

If u, v, end P of equations (29) and (30) are replaced by the right
sides of equations (31) and if, moreover, equations (8), (9), and the
continuity equation (12) are then subtracted from the corresponding
equations (29) and (30), one obtains:

W-l)%w'+wf+n%]+%n'+%n-tw;:o (32)
u Ut + Uug' + voUs + II' = - k, (33)

ro' + Uvo' + voV’ + [I-

- K (34)

For the expansion of equations (32), (33), and (34) the following
method must be observed in regard to the partial derivatives of 1.

| Fixed streamline
|
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According to the figure on the preceding page it is seen how the distance
from the frozen streamline. 1l changes with the partial changes of x
and Y.

If x changes while y remains constant, then the rate of change
gl' is the same as the negative rate of change of the frozen streamline;

hence,
1 dyo Vo
R (35)
. , : o /
If y changes while X remains constant, the change of the distance
1l 1s the same as the change -of the ordinate y; hence, ¢
1
Q- (36)

so that A

Yo

L n-1 tan
U o) upnm + Zun 1

v
Voo - _O_Zv -1 +} v 1o
uo n n

r (37)
Ve = }-Zv oyt
3 n
v
II' = - uo% Pnn'qn’:L +ZPn'nn
I1: = %‘ZPnnnn-l .
J

It is important to note that in this section (of finite spacing)
the notation of the abcissa x will be changed to x,, in order to

indicate that the original streamlines (except the "fixed" ones) will
in general be distorted. Hence a point at x, will move to a position

x=xo+xl.
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The recursion formulas for u, and P, ére obtained by inserting

relations (31) and (37) into equations ( 32), (33) and (34) as shown
below.

The first equation (equation (32)) gives {see equation (11))

i K (38)

from which it is seen that the shape of the streamline is not changed
by the first term of the series development and

'V'o V2 Pl uoPl' + ulPo'
2Qupl— - — ] =Ll +u =+ 1
2<;o ué) <:L ° P, (y - 1)p, ~(39)
v 1 ' + U.nP !
(n + 1)u Yo _ Tox ) = Z<? + uy! > + Z (40)
2+l\u Uo Un4l . 7 - 1)p,

The second equation (equation (33)) furnishes the relations

-6
Pl~'l,-——kx—l-— 25—<m> (k1)

ugl !
Pp = —<uou1 + Pl) . (k2)
1 ‘ ' '

Putl = (T 3)v- — (uoun + P‘> L (43)

O/ ‘ -

The third equation (equation (34)) becomes

Py = - 1k, (k)

Z 1 1 7' u 1 )
P2 = - §<uovl + ulvo ) = - —2" é(vovl) . (l|-5)

i ' '
Prel = - 551 (ugvy ' + upvy ) (46)




1k \ NACA TN 2718

Since the two values of P; must be equal, it is seen that

kg + kyvo =0

which simply confirms equation (10), that is, the condition of friction-
less flow.

The comparison of the two values of P2, which must be equal,
gives, after integration

ugu + vovy + Pl Constant

and, by means of equation (38),
P; - Constant

u = -uy 3 5 (4T)
u,< + vy
‘P - Constant
V) = o ——5— (48)
U< + Vo
2 ' '
u [ P1vo 1 Uo
P, = = -2—=(v.v (L49)
2 2Vo\302 + v0é> 2 Vb( O:O
The comparison of the two equal values of P3 given by equa-
tions (43) and (46) requires that
uo 1 .
;g uu, + Pé) = - <?0v2' + VOW%Q (50)

From equation (39) one has

lu P u, u Pq' + u;P,’ '
_ _ Yo ' 1 o o1 170 _
UpV, - VplUy = 5 (ul + ' 5 > + =5 R = £(p,) (51)

where the right side, expressible in terms of P,, has been abbreviated
to £(Py).

If the velue of u, of equation (39) is inserted into equations (L43)
and (46), equation (50) becomes

(0u2>' + 2= (i) = -Z%f(Po) (52)
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?

Observing that P2/ 1 1is also a known function of P, one can introduce
the abbreviation

- EE " “icv_'f(POE!E &(2,) (53)
R _
and can write
(uou2 + vove)' = g(p,) (54)

vwhich by integration becomes

y (uou2 + v v2) -fg(Po) ax, + ¢ = h(P,) (55)
If equation (51) is also used, namely,

vu, - u v, =f (Po )

or, dimensionless,

Voo - UgVso f(Po)
uv Fuv ' (56)

(o Ne] [o e

then the veloclty components of the second term of the power-series
terms assume the values

uoh + vof _

2T v o0
o) o)
-u.f + v.h

V2 = 02 02 ‘ (58)
U + Vo

The results show that all en'%ha.lpy gaé,lso pressure) functions up to
Y -7 )
the series terms of factor n° = ___10_

of the enthalpy function Po(xo). It will be seen in the following

section that the choice of this function has to satisfy the conditions

of regularity of the derivatives and the requirements for continuous
flow into and out of the blade system.

are expressed as functions

>

f e - Y RGN UOU SISV NSRS AR NSV SRR RIS B » - MV 1L e UL
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Intake and exit boundary conditions.- The continuous flow, produced
by a continuous force field, is evidently also continuous at the intake
and exit. After the transition to finite blade spacing, the flow inside
the blade system becomes discontinuous across a solid blade. Since it
must be assured that outside the blade system the flow remains contin-
uous, the condition of continuity of pressure and velocity must be
imposed at the leading and trailing edges of the finitely spaced blades.
These conditions are automatically satisfied for the even powers of n
in the transition terms (Pnnn, u,nt, and vnnn). It must therefore be

only required that uq, u3, Vi, V3, Py, P3, and so forth are zero

at x=0 and x = 1.

In the case treated in the section "An Application of the General
Anslysis," the above conditions (as seen below) are accomplished up to
the second series term P31, by requiring that the enthalpy function of
the continuous force field, according to-equation (L4l1), satisfies the
condition

dPg\’

T o = <k"),’§:§’ - 0 . (59)

x=1

It is also necessary to cancel the arbitrary constant in equa-
tions (47) and (48). The equations then show that the condition P,' =0

at x =0 and 1 satisfies also the continuity condition for the inflow
and outflow velocities. ;

Blade shape.- From equation (38) it is seen, as mentioned above,
that the first series term of the transition to finite spacing keeps
unchanged the shape of the original streamlines of infinitesimal spacing,
vhich, of course, means that, at least in the first approximation, the
blade shape is not changed for any spacing.

The second series terms u, and vV, change the shape of the

streamlines and of the blade according to equations (57) and (58) by
means of the relation between the velocity components ug + upn + uony

: 2 .
and vV, t Vin *+ un©  as follows:

g _ Vo + VlT] + 'V':LT]2
ax  ug o+ ugn + uon?
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Equations (38) and (11), if only terms up to the factor n2 are kept,
lead to '

§X=%91+n2<y_2__u_2> (60)

The coordinates x and y of a free streamline, particularly the
one which shall become part of a blade surface, will in general differ
from the coordinate x, and Yy, of the frozen streamline. Therefore,
the left side of equation (60) must be developed by means of the
relations

™
I

X+Xl

O

and

n

¥y =35+l

v u
With these relations, together with definition (51) for 2. _g,
v

. o o
equation (60) becomes
dn_
d 1+ 1 ' (P
_(_11 = .yo dyo - dyo 1 - 1]2 ( O) (61)
dx dxo N dxl dxo UV,
b —
. dxo
If the numerator and denominator of equation (61) are multiplied by
dxy dxy
- ——=) and second and higher powers of —— are neglected (an
dx, ax,
assumption which must be borne out by the results of the analysis),
then equation (61) is transformed as follows:
o ) mfe g -
B, T T ® T B\ g

dx
If now it is further anticipated that %ﬁ_ —1 is small and of higher
. )
order, one obtains from equation (62) the equation

£(Py) dx v,

2 X

+ 12

(63)

g

lu

(¢] o]

e et A e A A e S = T3~ %
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ax .
This neglect of %%— Eil must be justified by the choice of the magnitude
(o] (6]

of Ngp and by the numerical results.

In equation (63) which is the only one controlling the blade shape
of finite spacing Ngp» there are the two variables 7 and X5 it is

therefore permissible, for instance, to choose one variable and solve
for the other by integration of equation (63). After both of these
values have been determined, then the final blade shape is developed as
shown schematically in figure 2, and discussed in the paragraph below.

The construction of the airfoil shape is as follows.- For a given

X, + X
value of the abscissa _9_7__l, the corresponding values of 14,
following from equation (63), are measured up and down from a pair of
fixed equidistant streamlines with the spacing Ngp- In general, the
values of 0, do not have to be equal to each other; this fact permits

a large variation in the design of blade shapes. One other pertinent
general fact to be observed is that the values of n,; éand X, + X

must be determined with the requirement that the airfoil will be closed
at the leading and trailing edges. The boundary conditions for the
integral of equation (63) must therefore require that .the upper and
lower airfoil surfaces intersect at the leading and trailing edges.

There are two simple integrals obtainable from equation (63) of
which solutions will now be derived and discussed.

If x; for a first possibility is chosen to be equal to zero; that
is, if the points on the blade are required not to change their Xq
abscissa, then the solution of equation (63) becomes

_ 1
n= of(Po) (61")
L/Tx.__é__ dxo + Constant
0 Y :

It is seen from equation (64) that the variation of 7 with X, depends

£(Po)
u02
be the same for n4 as for 7_. In order that the airfoil, derived

from 1., will be closed at the leading and trailing edges, it must be

required from equation (6L4) that M, +N_ = ngp at the intake and exit

X .
upon the integral quantity ,]F dx, eand that this variation will
O N
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of the blade system. This requirement is satisfied at the intake by
setting the constant in equation (6L4) equal to zero. At the exit,

t f(Po)

dxo is zero taken

however, My =0 only if the integral Jf

o
over the limits of xo =0 "to x, =1. In practice, this requirement

will be very difficult to accomplish because of the complexity of that
integral. However, a number of numericel calculations with a P,

function, chosen symmetrically with respect to the midchord point, have
shown that the value of this integral in equation (64), between the
limits of x4, =0 to x, =1, is quite small. Hence, the airfoils

derived from those calculations can, for all practical purposes, be
consldered as line airfoils (airfoils of zero thickness). The method
to obtain airfoils of finite thickness is discussed later on in this
section.

A second possibility of a simple solution of equation (63) is to
prescribe 1 = Mn,+ = Constant and 1_ = M4n,- = Constant, where 1)

must be one-half of the blade spacing ngp. Then the solution of equa-

ax; 5 £(P,) £(P,) 3
tion (63), following from ol v where oo = £(x,),
becomes
Xo
(P
= qin2f (%) dx, + Constant (65)
u.v
o'o

' X1 xo .
If the dimensionless functions = £, eand = &, are introduced

and it is required that the intake (entrance) edge of the blade remain
in place, then equation (65) can be written in the following form:

%o £(P,)
= a2 j; ek S (66)

Only line airfoils can be derived from equation (65). Furthermore,
as stated above, there is a special condition which must be required to
obtain these airfoils; namely, that the value of Mn.+ must be one-

,——

half of the grid spaciﬁg ‘Ngps in order that X be the same coming
from both the fixed streamlines.

It is possible (and has been done in the following section) to
integrate equations (64) and (65) graphically by means of the known

. e i e e -
e e e+ e = e rrr—r = e e i e Sy et P e ——
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functions y,, uy, Vg, up, and Vo, which follow from the choice of
the pressure function Po(x,) (equations (11), (22), (23), (57), and

(58), respectively). It may be remarked that up to the first and second
transition terms the inflow and outflow remain unchanged (u and v are
continuous outside the blade system). This is so since uin  and vin

are zero and u2n+2 = u2n_2 and v2n+2 = v2n_2 at the entrance and
exit. The transition to the series term with u2n2 and v2n2 yields

ah outside flow without discontinuities, but which is a periodic func-
tion of Yy, with period ngp near x =0 and x = 1.

The method for airfoils of finite thickness which are closed at
the leading and trailing edges must use the differential equation (63)
in a more general manner. In this equation both 7 and x are depend-
ent variables, so that any choice of a function is permitted for one of
these variables in order to find the other; or, if it is more convenient,
one of the variables can be prescribed as a function of the other (e.g.,
X) = f(n)). Such a choice, with a sufficlient number of constants, will

give an airfoil of finite thickness which will be closed at the leading
and trailing edges.

AN APPLICATION OF THE GENERAL, ANALYSIS

The design of a system of blades, deflecting a ducted uniform flow
about a prescribed flow angle, is explained in the following sectioms.

Computations for an infinitesimally spaced blade system.- A tech-
nically important example of a two-dimensional blade system is the case
of a system of airfoil vanes deflecting a uniform flow about an angle
of prescribed magnitude.

This case, is, for instance, realized by the deflector system in
a wind tunnel with a deflection angle of 90°. Such a case will be
treated in this second section.

It was shown in the general analysls that the enthalpy function
determines the functions of all other variables. In this example an
enthalpy function P, 1is chosen originally symmetric about the mid-

point xg = 2/2 of the chord. It follows then from equations (15) and
(16) that the velocity function v, is antisymmetric about the same

g;int Xq = 1/2. Hence the original streamline shape, following from

v
Eig = 59, will also have a symmetrical shape about the half-chord point.
o] o]
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The development of the series terms of finite spacing leads to a
restriction in the choice of the function Po' This restriction is

necessary to prevent a singularity of the functicn P; at the point
" X, = 1/2 (where in this example v, = 0); namely, that P,' =0 and
P," = 0 at this point. This is seen from formula (41) for P; and its
first derivative given as follows:

-6 \
Po! (41)

and

It is deduced from an inspection of these two formulas that, in order
to avoid 1nfinite values of Py and P;' where v, =0, it becomes

necessary to require that there P,' = P," = 0. This fact is also valid

for nonsymmetric streamlines at the point where the streamline tangents
are parallel to the x-axis.

A summary of the requirements for the choice of the basic enthalpy
function in the continuous force field of infinitisimal spacing is now
as follows:

(a) The condition for equal pressure at inflow and exit is
Xo
Py =Py at &y E~7— =0 and at ¢, =

(b) The conditions for equal inflow and outflow (P;, u;, end v; = O

and the conditions (59)) and for avoidance of a singularity of 'Pl at
§O = 0.5 are

Po' =0 at £ =0, 0.5, and 1

g
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(c) The condition of preventing a singularity of Py' at
€, = 0.5 is

P

o' =0 &t £, = 0.5 (see explanation above)

x

The following polynomial satisfies the above conditions for Pgj:

Po = Pyp + P¥E(¢,) (67)

where
£(8,) = £62(go - 1)(e2 - o + 3) (68)

The value of P¥ 1s determined by the fact that Vo = 0. at the

location ¢, = 0.5. This is done in the following manner.

From the energy integral (14) one has, where v, = O,

2 — 2
uo + 2PO = .uin2 + 'V'in + 2P:Ln

Replacing P, in this energy relation by its value from equation (67),
it follows that

Up + 2P*P(E,) = uyp® + vyp2

or

ep*f () = QPin? + vin?) - uo2

- Vin)? o2l
aP*f(E,O) =¢Cil + T - u_j_;_- Ujn (69)

If now it is required that the flow deflection be rectangular (see
fig. 3) then the intake and exit angles must be equal and of value 450,
This requirement is expressed by

or

Uin = Vin
(70)

Uex = Vex
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Equation (69) with these values from equation (70) and f(go) = £(0.5)

then becomes

uinel ';10 2 B ‘
P¥ = 2 - ({ — 1
The value of f£(0.5) follows from equation (68); namely,

2(&5) = £(0.5) = —— = 7.8 x 10-3
128

Furthermore, according to equation (22),

P \-2.5
EQ_ = <79;> (72)
Uin Pin

which, if P, is replacéd by its velue from equation (67), leads to

5 y -5
52_) = ‘ + (7.8 x 10 Ei_\ 7
( 1 ( x )Pi ( 3)

The formula desired for P* now follows by replacing E?i) in equa-
. u

tion (T1) by its value given in equation (73); this formula for P* is

- “5-0

2|(7.8 x 1073)- 2 1l 4 |1+ (7B x103)B T 0 ()
' ug Fin
Equation (TL4) is solved graphically with the condition that P¥
b

is positive, since P, = ;—Z_T 79 must be greater than zero all along

- o) .

a streamline.

The following data are chosen for the numerical calculationsf

Uy, = 600 feet per second = vy,

-y Pin__» g = 3.0 106 (£t 2
Pin T oy T 8Ty, = 3.087 x 10° (ft/sec)




ol NACA TN 2718
Pyy = 2.097 x 103 pounds per square foot

Pip = 2.378 X 10’3'slugs per cubic foot

y = 1.4
R = 53.3 feet per degree

_ o
Tin = 514° F absolute

With these data, the solution for P¥ from equation (T4) is found to
be

P* = 30.123 x 10® (£t/sec)?

so thst
Px
gzg = 9.758

On the basis of this result, together with equations (67) and (%),
the enthalpy P, end the pressure distribution along the streamlines

for infinitesimsl spacing are calculated and presented in table I.
This enthalpy function P, is plotted in figure L.

After the enthalpy distribution is known, all other flow variables
and the streamline shape for infinitesimal spacing are reasdy for compu-
tation. The necessary formulas for these computations are tabulated
in the section entitled "Compilation of expressions for infinitesimal
spacing" under General Analysis. Tabulated values of P, u, and v,

and y, are given in tables I, IT, and III, respectively.

Computation of shape of finitely spaced blades.- After several
test computations of blade shapes by means of formulas (64) and (65),

it was found to be preferable to use formula (65) or (66); that is,
to assume the distance numbers 1 = Z_%_ZQ = Constant. It follows then

that all streamlines, except the fixed streamlines, are distorted only
in the direction of the (dimensionless) chord abscissa £, so that,
according to equation (66),

x ° r(P

00 v
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By means of equations (22) and (23) and the data chosen above, the
functions u, = u,(&,) and v, = v (&,) were computed and the results

are shown in table II. It is, furthermore, necessary to compute the
£(Py)
values of 3 v9 , which is obtained from formula (51). The values of
o'o
P; and uy (with the constant equal to zero) are given by formulas (41)
and (47).

£(P,)
Table III shows the numerical values of the function o , the
o'o
integrals b/k £(Po) o» @and the specific distortion - A
Eo f(P 1
= nin o’ where Nin =5 Ngp = 0.1, so that Mgp = 0.2,

The choice of this value of 0.1 means that it is assumed that the dis-
tance between the blades is one-fifth of the chord.

The shape of the blade in comparison with the original streamline,
as derived for the case of infinitesimal spacing, is shown in figure 3

,in the scale 1l:1, with the assumption of a chord 1 equal to 12 inches.

It is seen that the chord is increased 1/2 percent corresponding to

1 ’ .
inch and that the form becomes slightly fuller at the intake and
1867 ghtly

flatter at the exit. In general, however, the blade.shqpe is very
nearly the same as the streamline shape of infinitesimal spacing.

The entrance and exit angles of flow are slightly changed, as can
be seen from equation (60), written as follows:

ta:a(q)o + e) = tan q)o)E+ 1 czj (75)

where tan ¢, = 1, and tan € is the deviation caused by the transition

to higher-order terms. If powers of tan ¢ higher than 1l are neglected
then it follows from equation (75) that

tan V. u v u

tane:-.i 2.—.?._._2. =i_]: 2__2._._2 (76)

2 M v u 2 N \J u
1+ tan @, o (¢

The data of the numerical example above furnish the value ¢ = il.3°,

showing that a very small change results from the required deflection,
after the transition was made to finite spacing.
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Computation of flow variables for finitely spaced blades.- By means
of the velocity and enthalpy formulas given for wu;, up, Vv, Vo, and

Py and P, (equatioms (47), (57), (48), (58), and (41) end (49),
respectively), the values of the flow variables u, v, P, and p
for the finitely spaced blade system are found. The results of the
calculations, based on the above formulas, are presented in table IV.
In figure 5 the resultant velocity-ratio distributions are presented
along the suction (upper) and pressure (lower) surfaces of the blades;
namely,

1/2 ' 2 2l1/2
VR ) W@ 4 2 \( ) (uo +upn + uon?) o+ (&0 + v + van?) /
VR,in uin? + lefy ' uin? + vin2

where 17 1is positive for the pressure surface and negative for the
suction surface. The resultant velocity curves in figure 5 are plotted
against x = X, + X7, and the curves are seen to be very nearly sym-

metrical with respect to the chord midpoint. It is also observed from
figure 5 that the resultant velocities for the intake and exit stations,
on both surfaces, are equal to each other; this equality satisfies the
previously discussed conditions of assuring continuous flow into and
out of the blade system.

The values of resultant velocities along the suction surface, on
the forward and rearward 25-percent-chord portions of the blades, become
greater than the intake velocity, while along the middle 50 percent of
this surface the velocities are lower than the intake value. The maxi-
mum and minimum velocities on this suction surface are approximately
10 percent greater and 38 percent lower, respectively, than the inteke
velocity. Along the pressure surface, the velocity variation, also
almost symmetrical about the midchord point, has values which are always
lower than the intake value; the minimum value is approximately k5 percent
lower than the intaske velocity.

The distribution of the pressure ratios P/Pin for the suction

and pressure surfaces was computed from the calculated enthalpy values
P, given in table IV. In terms of the enthalpy for finite spacing,
the pressure relation (20) becomes

2 - (P32, (Po + Pyn + P2n2>3’5
Pin (Pin) Pin

Values of P/Pin. are plotted against xg + x3 in figure 3 perpendicu-
lar to the airfoil surface. It may be noted here that the pressure

curves on the suction (convex) and pressure (concave) surfaces are sym~-
metrical with respect to the midchord point. Furthermore, the pressure
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Jump from the upper to the lower surface 1is small, so that the resulting
alrfoil 1ift coefficient will also be small. In the direction of flow,
approximately 30 percent of the convex surface has a small pressure
decrease, while the variation along the concave surface is everywhere
grester than the ambient value. By a different assumption of .the orig-
inal pressure function, however, it is possible to attain a much greater
region of suction pressure on the convex surface.

It is.of interest to note that the original assumption of'an enthalpy
function P, which is symmetrical about the midchord point leads for

Tinite spacing to very nearly symmetrical variations, not only for the
blade shape, but also for the flow variables.-

In order to Jjudge the convergence of the series for the velocity
and enthalpy (pressure) variations with £,, table IV is presented.

From this table it is seen that the convergence is everywhere good, with
the exception of the values of v2n = =23. 76 feet per second against

vn = -7.0 feet per second for & = 0.4 and 0.6. The reason for the

poor convergence at this point seems to be related to the assumed enthalpy
variation of infinitesimal spacing and could have been avoided by a
further refinement in the blade design.

CONCLUDING REMARKS

A method of obtaining two-dimensionsl systems of equidistant blades
has been presented. Such blade systems will produce a prescribed deflec-
tion in an originally uniform stream of a compressible nonviscous fluid.
The essential features of the method are that it is assumed, in a first
step, that the blade system 1s replaceable by a system of infinitesimally
spaced blades, while, in a second step, the transition is made to
finitely spaced blades.

The analysis shows that two types of finitely spaced airfoils can
be derived, namely, line airfoils (zero thickness) or airfoils of finite
thickness. The actual choice of one or the other type depends upon a
gsolution which is multivalued because of two dependent variables in an
ordinary differential equation (of only one independent variable). The

technicael requirements of the problem must also be considered for a
decision.

A numerical example is given of the procedure for the design of
blades, deflecting a uniform nonviscous ducted flow (Mach number equal
to 0.72) about a prescribed angle of 90°. The example can be interpreted
as the theory of & system of guide vanes in the corner of a wind tunnel.

e o i e e 7 Tt e e e e = SR S, T = o e s T
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It is found that the desired deflection can be achieved by a system
of line (zero-thickness) airfoils which are nearly symmetrical about the
chord midpoint. The shape of the line airfoils for finitely spaced
blades is, for this example, found to be very nearly the same as the
shape of the streamlines of infinitesimal spacing. The pressure Jump
across a line airfoil in the system is found t¢ be small, so that the
resulting airfoil 1ift coefficient would also be small. In the direc-
tion of flow, approximately 30 percent of the upper surface has & pres-
sure suction, while the pressure variation along the lower surface is
everywhere greater than the ambient value. With a different assumption,
however, of the initial pressure function, it would be possible to have
on the upper airfoil surface, if desired, a much greater region of suc-
tion pressure.

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., November 1k, 1949
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APPENDIX

TWO-DIMENSIONAL, VISCOUS, LAMINAR, STEADY
COMPRESSIBLE FLOW THROUGH A SYSTEM OF

EQUIDISTANT NARROWLY SPACED BLADES

Viscous flow through a grid system of equidistant, narrowly spaced
blades is treated in this appendix by the introduction of a velocity,
velocity gradient, pressure, and force field of uniformity across the
blades. This is accomplished by integration of the continuity and the
Navier-Stokes equations in the direction y across the blades, in order
to establish the uniformity of the fleld in this direction, but retaining
the variation in the direction x perpendicular to y. In this manner
the actually concentrated boundary forces of the blades are transformed
to a uniform force field. From the thermodynamic energy equation,
applied to the heat produced by viscosity, an integral is derived for
the pressure function in terms of a freely choosable streamline (blade)
curve and one of the veloclty components.

The method of treatment applied in this appendix is a genersl-
ization of the method applied in the body of the paper and in a preceding
paper (reference 1) for isentropic flow.

An extension for viscous flow of the method was necessary because
- of the difficulty of the boundary conditions of zero velocity and of
the more complicated problem of transformation of mechanical into heat
energy. The extenslon consists of the following points:

(a) An explicit method of averages in the direction y connecting
corresponding points of the blade system

(b) A determination of the heat generated by viscosity and from it
the derivation of the pressure function

(c) A free choice of the streamline (blade) equation and of one of
the veloclity-component functions

The blade system considered is shown in figures 6 and 7, arranged
in line and staggered, respectively.
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Analysis
The snalysis will be based on the following assumptions.

(1) The actual pressure and velocity field is replaced by a field
of average pressure, average velocity, and average velocity gradient
which is uniform in the y-direction but variable in the x-direction.

(2) The.original velocity distribution across the blade pairs is
assumed of parabolic character analogous to the Poiseuille flow,l while
the original pressure and density distribution is assumed to be of
little change across and nearly linear. These assumptions for the average
equations give certain mumerical factors of an appropriate order of
magnitude, but are open for any change by refinement of the theory or
comparison with experience.

(3) The set of concentrated force layers of the blade surfaces is
replaced by a force field uniform in the direction y (across the
blades), which represents in the average the action of the blades.

(4) The values of the coefficients u of viscosity and of v = %

of kinematic viscosity will, in view of the slight changes of temperature,
be considered as constant.

(5) The conduction of heat in. view of the high velocity of flow
will be neglected.

The following abbreviations are used:

o _.
8;:

3 .
3

yo+h
fy (% = () 2 (average)
[0]

where (7) denotes an average value and h the spécing distance in the
y-direction.

lone important refinement should work with the experimental fact that,
between narrowly spaced walls, the boundary layer is thin.at the inflow and
becomes parabolic toward the exit.,
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The continuity equation and the Navier-Stokes equations for viscous
two-dimensional flow between a pair of blades may be at first stated in
thelr complete forms; namely,

(pu)' + (pv)* =0 (A1)
*wu' + vu + P! o= % v(u' + v)' - vku" +id) =0 (a2)
uv! + vv + P° - % v(u' + ) - v(v" + %) =0 " (A3)

The continuity equation (Al), to be averaged along the y-axis at
any fixed cross section x, must be transformed as follows:

‘v

\/Oﬂl(pu)'dn +/;1(PV)" dn =

where 1 = Z_:EXE, an = h-t dy, and h 1is the distance between blades.-

The second integral is zero becsuse the velocity v is zero at
the limits -because of viscosity.

The result is therefore

EE&[\(DU) dn =

p Constant

’ (k)

~J/

The method of averages in the y-direction for the terms in the
dynamic equations (A2) and (A3) is done as follows.

It is assumed that the distribution of the velocity components u
and v 1in all cross sections along the y-axis is, as said before, of

e e e e m A e e e A m i s — ————— — s e £~ e —eme s
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parobolic character in order to satisfy the condition of zero velocity
at the limits (analogously to the Poiseuille flow). This 1s expressed

by

u = )-l-umaxﬂ(l - T]) - v = hvmaxn(l - Tl)
= 2
ﬁ:%umax v=§'vma_x
e 1 7;=§v 1
U= 3 Yy 3 ‘max
?.:O ;.=0
" 2 1 —VT{;—g'V "
U = 3 Umax T3 mex
> (45)
— -2 -2 - _ =2
¥ = -8uy, " = -12@h ¥ = -127h
— o S 6 —
w' = g uu' vt = 5V VT
i = 6g T - 6T T
5 5
Vi =0 W=0
u't =0 T -0
J

In the dynamic equations (A2) and (A3) the forces acting on the
flow do not appear explicitly, but only indirectly in the boundary
conditions. In the averaged equations these concentrated boundary
forces of a pair of blades will be uniformly spread over the distance
h between the blades. Their values (functions of x) are finally found
by the values of the variables u, v, and P.

If now these forces (called k, and ky) and the expressions (A5)

above are inserted in the dynamic equations, they assume the following
form: .
3 (=2 = b — 2= _
5(u)'+P'-v§u"-12hu—]‘£x (A6)
6-—"“; 5 =1 L -2—-_
UV +P - v{F" - 312 v)—ky (AT)
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The Bernoulli equation is obtained if equation (A6) is multiplied
by U and equation (A7) by ¥ and added. Moreover it will be observed

that
. —2\n 2
T " =(‘§‘> - (T")

vo - (B) - @

according to relations (A5),

<§‘ﬁ2 + %3Vé>'. =0

and, following from symmetry,

1
=L %‘P-dy=Pl-PO=O

Then the result is
;l (2 +72) + P - v( + %52531+ |
v [%(ﬁt)? + (¥1)2 + lgh—Q( 2 l'-%] kxu + k¥ (A8)

The first term on the left side of equation (A8) represents the
total mechanical energy (per unit of mass) which travels with the flow
without change. The second term représents the loss of mechanical
energy that is the amount of heat energy (per unit of mass) generated
by the viscous stresses and also traveling with the steady flow. This

substantial derivative denoted'by %% will now be expressed by the rise

of temperature T and the work of pressure P %%, where V =,p'l. The
equation following from this relation is given by

-1 o7
%% - PT%E— = Cvp | ‘ (a9)

This equation s%gnifies that the heat generation plus the work of
D S -
the pressure P—ﬁf_ is positiv%) raises the temperature, a work to

which also the mechanical energy contributes, without however generating
heat.

A e e s e i i = e e A T e £ T e 7 e e O et e o S A TS e - Sy T S e S o
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The development of the equation above leads to

\JE,)t(u')2 + (v1)2 + 120722 + % ve):l= u(‘z-),@ - 1) +up(p™t)' (410)

where, for the sake of simplicity, the average bars are left out. This
will also be done in the next equations.

The average density p must now be expressed in terms of the aver-
age velocity U by means of the continuity equation

pu = m = Constant (A11)
A certain difficulty must be overcome to abply this equation, since
there is in principle a difference between pu and P U. However one
can show that the difference is very small if p varies little from
one blade to the other.

Assume, for instance,
P = Pmax - PL ¥0(1 - 1), Pl << Pnex

u = gmaxhn(l -1)

Then,

l .
pu =/; an |Pgax - P1H(L = )| [upakn (1 - 1)

Il\)

=3 unmucQﬁmax - P ﬁ)

_— 2, 2
- P U= \Ppax - P1 3> Ynax 3

The difference consists only in the factors 0.8 and 0.667 of the
small value P
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It seems therefore permissible to derive from equation (All)

he]
u
e |

With this relation equation (A10) becomes

p' + pr(B/2)w® = m(y - 1)u? v[%(u’)e + (v)F 4 12H'2452 + %véEI(Alg)

This differential equation does not present any difficulties,
particularly not after the functions u and v of x are chosen.

They can be freely chosen, since the four equations (equations (Al),
(a2), (A3), and (A12)) have the six variables p, u, V, P, ki,

and ky. The following simple example starting from a prescribed stream-
line surface may be given as follows.

The stresmline surface in figure 8 is defined by the equation

SBT3 5o 26 - 5 e )
Yo/H = m'} 387 + 2t 22(g 5¢° + 4&] (413)

where Yy, 1s the ordinate function of the curve, H = Yo,max’ £ = x/1,

and 1 is the length of the chord (see fig. 8). It is correct as stated
above to choose either the function v(x) or u(x).

A practical assumption is

u = Constant = ujip (A1k)
and with it there follows
dy alyo/B) g
v=%n——*in(°/)? £ =x/1  (815)
a(x/1)

and consequently

(A16)
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where the last term is computed by means of equation (A13). Dividing

equation (A15) by equation (A16) one obtains

IG5 N
ate in 5)

and, Iin consequence,

V=Vin%E§2 - 6§+2 —‘29—2Ql-§3 - 10¢ + h)]

(A17)

This example shows that the velocities, the force field k, and
the pressure function can be derived from a prescribed shape of the

streamline surface.

With the values of u and v from equations (All) and (A17) of
this example, the differential equation (Al2) can be. solved by a
simple quadrature, in order to obtain D as a function of x.
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TABLE I. - DISTRIBUTION OF ENTHALPY AND PRESSURE

Po
Pin

FOR INFINITESIMALLY SPACED BLADES

-1+ 2 f(&,); see equation (68)]

P.
imn
p* PO Po

i P e e

0 0 1.0 1.0
Wl .022526 1.0225 1.0810
.2 .053708 1.0537 1.2009
.3 .071004 1.0710 1.2713
A .075878 1.0759 1.2918
.5 .076235 1.0762 1.2931
.6 .075878 1.0759 1.2918
T .OT100k4 1.0710 1.2713
.8 .053708 1.0537 1.2009
.9 .022526 1.0225 1.0810

1.0 0 1.0 1.0
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TABLE II. - DISTRIBUTION OF VELOCITY COMPONENTS

FOR INFINITESIMALLY SPACED BLADES

£ Yo Vo
° (£t/sec) (£t/sec)
0.0 600 600
.1 567.53 568.83
.2 526.45 333.54
.3 505.45 161.7h
A k99,72 40.988
5 499.36 0
.6 499.72 -40.988
T 505.45 -161.74
.8 526.45 -333.54
.9 567.53 -568.83
1.0 600.00 -600.00
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TABLE IIT. - SHAPE OF STREAMLINES y, OF INFINITESIMALLY

SPACED BLADES AND NONDIMENSIONAL SHIFT E’l OF BLADE

CHORD DUE TO TRANSITION TO FINITE SPACING

g 3 .
£(Po) 1 ° £(Po) 1in? [ “o £(Po) v,
—_— aé £ = a 0
o Zauovo _ 12Jdy  UoVo ° 1 ) 7' b UsVo o (in.)
0 -4, 6497 0 0 o]
1 | -2.6129 -.34503 -.00345 1.138
.2 | -3.021% -.68805 -.00688 2.056
.3 T.7160 -. 75492 -.00755 2.628
b | 66.636 .08899 .000890 2,867
5 .28157 .00282 2,915
.6 | 66.636 ik .O0OkTL 2.867
T 7.7160 1.3181 L0132 2,628
.8 | -3.021% 1.2512 .0125 2.056
.9 | -2.6129 .9082 .00908 1.138
1.0 | -Lk.6k9T .56314 .00563 o}

[ S A
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TABLE IV. - DISTRIBUTION OF VELOCITY COMPONENTS,
ENTHALPY, AND PRESSURE FOR UPPER AND LOWER
SURFACES OF FINITELY SPACED BLADES
(1) - (2) (3) (%) (5) (6)

+1
ﬁo Yq ?i? u2ﬂ2 YWpper W ower
0 600 0 b7 552.6 552.6
1 567.5 84 .49 -1.16 650.8 481.9
.2 526.5 £131.5 28.98 687.0 kok,o0
.E 505.5 #37.4 60.27 - 703.2 428.4
. 499.7 485.35 43.31 628.4 L57.7 ‘
.5 499.% 0 0 . 499.4 499.4
.6 kog.T 185.35 43,31 628.4 W57.7 |
T 505.5 374, 60.27 703.2 L4284
.8 526.5 #31.5 28.98 687.0 42k, 0
.9 567.5 8L .49 -1.16 650.8 481.9
1.0 600 0 47,481 552.6 ' 552.6
(1) (2) (3) (4) (5) (6)
s Yo zl? 72"12 ‘ Vupper Viower
. a
0 600 0 -19.51 580.5 580.5
.1 508.8 #75.75 12.25 596.8 k5.3
.2 333.5 183.29 28.84 5.6 279.1
.3 161.7 #3.97 6.80 212.5 124.5
A 40.99 #7.00 -23.76 24,2 10.2
.5 0 0 0 0
.6 -40.99 ¥7.00 23.76 24,2 10.2
T -161.7 F43.97 -6.80 -212.5 124,5 -
.8 -333.5 ¥83.29 -28.84 45,6 279.1
.9 -508.8 ¥75.75 -12.24 -596.8 5.3
1.0 | -600 0 19.51 -580.5 580.5

8The * sign indicates the sign to be used for the upper and lower
surface, respectively. The value of 1 1is -0.1 for upper surface and

0.1 for lower surface.

See figure 2.




4o NACA TN 2718
TABLE IV. - DISTRIBUTION OF VELOCITY COMPONENTS, ENTHALPY,
AND PRESSURE FOR UPPER AND LOWER SURFACES OF
FINITELY SPACED BLADES - CONCLUDED
& Py ifi? P2“2 Pupper Py over
0 [3.087 x 107 | 0 x 10-6| 0.0%0 x 10-6 | 3.127 x 10-6| 3.127 x 10-6
.1 13.157 .0865 -.0043 3.066 3.239
.2 | 3.253 L0970 -.021k 3.135 3.329
.3 | 3.306 L0766 -.0277 3.202 3.355
A 3.322 .0k29 -.0192 3.259 3.344
51 3.322 0 10 3.322 3.322
61(3.321 .0k29 -.0192 3.259 3.34k
.71 3.306 L0766 -.0277 3.202 3.355
.813.253 .0970 -.0214 3.135 3.329
.9 13.157 .0865 -.0043 3.066 3.239
1.0 | 3.087 0 .0k01 3.127 3.127
P
% in upper Pin lower
o - 1.0 1.0
. .9336 1.128
.2 1.008 1.245
.3 1.086 1.279
L 1.155 1.266
5 1.236 1.236
.6 1.155 1.266
T 1.086 1.279
.8 1.008 1.245
9 .9336 1.128
1.0 1.0 1.0

8The + sign indicates the sign to be used for the upper and lower
surface, respectively. The value of 17 1is -0.1 for upper surface and

0.1 for lower surface.

See figure 2.
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Incoming fiow

Outgoing flow

(a) Two-dimensional flow through a finitely spaced deflecting blade
system.

= |
W////////V\§

|

(b) System of infinitesimally spaced streamlines replacing in a first
approximstion the flow shown in sketch above.

Figure 1l.- Infinitesimally and finitely spaced blade systems.
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Figure 2.- General representation of blade surfaces for finite spacing.
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Figure 3.- Preesure distribution on a 900 deflector blade in a compres-
silble fluid. Vv velocity at airfoll leading edge; x., deformation

shift. Pressure at airfoil leading edge Pin’ 2,307 x 103; undisturbed
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free gtroam pressure, =2.097 X 10Y; undisturbed free stream velocity,

800 feet per second.
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Figure 4.~ Enthalpy-ratio distribution slong a streamline for infini-
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Figure 5.- Distribution of resultamb velocity on a 90° deflector blade
: in a compressible fluid.
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Figure 6.- Blade system Figure T.- Blade system
arranged in line. staggered.
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Figure 8.- Plot of ybIH ageinst E.
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